

An overview of Replicant development

Wednesday 9th July 2014

Paul Kocialkowski
paulk@replicant.us

Taking a closer look at Android

Android is actually a family of operating systems:

Google's Android

AOSP OEMs'
Android

CyanogenMod Omni

Replicant etc

Proprietary Android versions
Open source Android versions
Fully free Android versions

Android and Replicant

Replicant is a fully free Android version running on several mobile
devices

Regarding Android and freedom:
● AOSP is close to fully free but doesn't run on devices
● Community versions use proprietary parts
● Proprietary parts used for communication with the hardware

Well, I see that people have figured out why I'm quitting AOSP.

There's no point being the maintainer of an Operating System that can't
boot to the home screen on its flagship device for lack of GPU support,
especially when I'm getting the blame for something that I don't have
authority to fix myself and that I had anticipated and escalated more than 6
months ahead.

Jean-Baptiste Quéru, August 2013

Android and Replicant

Proprietary components:
● Never shipped with the system
● Replaced when possible, avoided when not

Replicant aims to be usable daily:
● Basic functionalities must work (graphics, audio, telephony)
● When proprietary: replace modules with free software

Biggest part of the work on Replicant: reverse engineering
● Understanding how the proprietary components work
● Writing free software replacements

Replicant doesn't deal with:
● Graphics acceleration (Freedreno, Lima)
● Firmwares
● Modem operating system

Proprietary HALs

● Kernel drivers
● libc syscalls

bionic
● Hardware modules

struct sensors_module_t HAL_MODULE_INFO_SYM;
● Modules interface (dlopen)

hardware/libhardware/hardware.c
● Modules headers

hardware/libhardware/include/hardware/
● Framework Java JNI

frameworks/base/services/jni/
● Framework

frameworks/base/
● Applications

Kernel

Hardware Abstraction Libraries

Framework

Applications

Free components
Proprietary component

Proprietary HALs

● Other specific interfaces:
Wi-Fi, vibrator, EGL

● Modules with dedicated libraries:
Bluetooth, NFC

● Proprietary kernel drivers are rare

Not all the modules are proprietary:
● Google Nexus devices
● Chips manufacturers:

CodeAurora, Omapzoom, AOSP
● Upstream community work

Kernel

Hardware Abstraction Libraries

Framework

Applications

Free components
Proprietary component

Always proprietary modules:
● EGL (graphics acceleration)
● RIL (telephony)
● GPS

Still a considerable amount (I9300):
sbin/cbd
system/bin/bintvoutservice
system/bin/gps.cer
system/bin/lpmkey
system/bin/playlpm
system/lib/egl/libEGL_mali.so
system/lib/egl/libGLESv1_CM_mali.so
system/lib/egl/libGLESv2_mali.so
system/lib/libMali.so
system/lib/libMcClient.so
system/lib/libMcRegistry.so
system/lib/libMcVersion.so
system/lib/libQmageDecoder.so
system/lib/libTVOut.so

Proprietary HALs
system/lib/libUMP.so
system/lib/libcec.so
system/lib/libddc.so
system/lib/libedid.so
system/lib/libfimc.so
system/lib/libfimg.so
system/lib/libhdmi.so
system/lib/libhdmiclient.so
system/lib/libhwconverter.so
system/lib/libhwjpeg.so
system/lib/libquramimagecodec.so
system/lib/libsecnativefeature.so
system/lib/libtvout_jni.so
system/lib/libtvoutinterface.so
system/lib/libtvoutservice.so
system/lib/libvdis.so
system/vendor/lib/drm/libdrmwvmplugin.so
system/vendor/lib/libWVStreamControlAPI_L1.so
system/vendor/lib/libwvdrm_L1.so
system/vendor/lib/libwvm.so
system/bin/gpsd
system/lib/hw/gps.exynos4.so
system/lib/hw/vendor-camera.exynos4.so
system/lib/hw/sensors.smdk4x12.so
system/lib/libakm.so
system/lib/libsec-ril.so

Aim of this talk:
● Not so much about the stakes or the result
● All about the process
● Reverse engineering looks hard
● Reverse engineering can be hard
● Reverse engineering is not so hard on Replicant

What you need to get involved:
● Read/write C code, makefiles, git
● Ability to keep going, handle failure and frustration
● Time

Skills: not so much…

About this talk

So we've got a proprietary module: let's get to the bottom of this!

Working together:
● Find other motivated people!
● Contact other developers who worked on similar things

Find out more about the hardware: chip manufacturer and name:
● Kernel sources have that information:

arch/arm/configs/cyanogenmod_i9300_defconfig: CONFIG_SENSORS_AK8975C=y
● Teardowns can help

iFixit
● Anything else:

Wikipedia, manufacturer
website

RE 101: Warming up

Once the relevant chip is identified, time to look for documentation:
● Technical literature on the subject

learn about the basic concepts involved
● Search for datasheets, manuals

look for websites selling the chip (DigiKey, SparkFun)
● Look up the chip manufacturer's website, see what you find
● Search for a reference software implementation

just in case you're feeling lucky
● Look for any other available resource and code about the chip
● If there is a dedicated kernel driver, read it, headers too

figure out what it does and doesn't do

In case of advanced desperation:
● Politely ask either the phone or the chip manufacturer
For the question you are asking, foo is not in a position to provide details of the
lux formula we addressed with bar phone team.

RE 101: Warming up

At this point, with some luck, you may have an idea of what the
proprietary software might be doing:
● I/O with the kernel (camera, audio)
● Communication protocol (GPS, RIL)
● Algorithms and maths (sensors)

Still have to figure out the magic that makes it work!

Time to look at the proprietary binary:
● Make sure this is legal in your case

Europe: article 6 of the 1991 EU Computer Programs Directive
● Always start by looking at logs of the binary:

adb logcat
● Try to make logs as verbose as possible:

command line arguments, configuration files

RE 101: Warming up

Static look at the binary:
● Always start with strings:

spot debug strings, function names, error messages
● Decompile the program: objdump -Dslx

helps understanding the structure of the program
● More advanced techniques: radare2

Android binaries are usually not obfuscated:
● Function names are preserved
● Often not stripped

Static analysis:
● Will help understand how things roll
● Can help figure out static data
● Will not tell much about the overall magic

… unless you're very good at reading assembly!

RE 101: Static analysis

Let's run the proprietary binary:
● Trace the I/O (syscalls) with strace

that can be enough to figure it all out!
● Module loaded by the framework: don't trace the framework

write a wrapper, trace the wrapper
● If any, make the kernel driver very verbose:

trace every relevant function and I/O (ioctl, read/write, transport)
hexdump any relevant data that comes through

● If maths are involved, trace in and out values and parameters
● Force specific values (kernel driver, wrapper)
● More advanced techniques: gdb

If there is no dedicated kernel driver (e.g. UART)
● strace shall be enough

RE 101: Dynamic analysis

Hopefully, the analysis should provide enough material:
● To understand what the program is expected to do
● To understand each step of the program
● To understand the physical meaning of things
● To figure out the relation between in and out values

use spreadsheet software and guess equations!

It usually doesn't work at first try:
● Try the various techniques during the process
● Try another binary for the same chip
● Take some sleep
● Take a step back

It doesn't always work:
● Not enough material is available
● Manufacturers aren't friendly

RE 101: Figuring out the magic

Samsung IPC protocol

● Logs from the device:
E/RIL (131): ===== HDLC DUMP =====
E/RIL (131): 12 00 FF FF 08 05 03 FF 02
E/RIL (131): 01 00 00 00 00 00 00 00 00
E/RIL (131): ===================
[…]
E/RIL (131): RX: (M)IPC_NET_CMD (S)IPC_NET_REGIST (T)IPC_CMD_NOTI len:12 mseq:ff aseq:ff
E/RIL (131): RX: ---- DATA BEGIN ----
E/RIL (131): RX: FF 02 01 00 00 00 00 00 00 00 00
E/RIL (131): RX: ---- DATA END ----

We can already figure out part of the data!
Looking at different messages prefixed with IPC_NET:
E/RIL (131): ===== HDLC DUMP =====
E/RIL (131): 12 00 FF FF 08 05 03 FF 02
E/RIL (131): 01 00 00 00 00 00 00 00 00
E/RIL (131): ===================
E/RIL (131): RX: (M)IPC_NET_CMD (S)IPC_NET_REGIST (T)IPC_CMD_NOTI len:12 mseq:ff aseq:ff
E/RIL (131): ===== HDLC DUMP =====
E/RIL (131): 12 00 00 04 08 03 02 03 04
E/RIL (131): FF 40 36 35 40 35 23 00 00
E/RIL (131): ===================
E/RIL (131): RX: (M)IPC_NET_CMD (S)IPC_NET_SERVING_NETWORK (T)IPC_CMD_RESP len:12 mseq:0 aseq:4

IPC_NET is 0x08! The next byte is specific to the command.

Samsung IPC, Nexus S boot

Samsung IPC protocol

● IPC header implementation:
struct ipc_fmt_header {
 unsigned short length;
 unsigned char mseq;
 unsigned char aseq;
 unsigned char group;
 unsigned char index;
 unsigned char type;
} __attribute__((__packed__));

E/RIL (131): ===== HDLC DUMP =====
E/RIL (131): 12 00 FF FF 08 05 03 FF 02
E/RIL (131): 01 00 00 00 00 00 00 00 00
E/RIL (131): ===================

Rest of the packet: specific to each message, logs can help!

Samsung IPC, Nexus S boot

OMAP3 boot mode

OMAP3 boot mode

OMAP3 boot mode

Replicant is currently driven by one developer!

● Financial contributions are fine
● We need brains!
● We need new functionalities
● We need new devices supported
● Lots of different tasks:

http://redmine.replicant.us/projects/replicant/wiki/Tasks
● Easy ports exist:

Galaxy Tab (P1000), Galaxy Note 10.1 (N8000)

Not every port or task requires reverse engineering!

Getting started on Replicant hacking

Steps to get started:
● Get a supported device, install Replicant on it
● Grab the Replicant source code
● Build Replicant for your device

Add small modifications, play around with the source
● Get familiar with it
● Learn about the Replicant development process:
● Complete a task or work on anything else you want to improve!

Once you're familiar, start a new port:
● Evaluate the device carefully
● If the port is doable, follow the guide:
● Once the port is usable, push it to Replicant

Getting started on Replicant hacking

Resources at the Replicant wiki:
● Replicant status

http://redmine.replicant.us/projects/replicant/wiki/ReplicantStatus
● Installation guides

http://redmine.replicant.us/projects/replicant/wiki#Installing-Replicant
● Build guides

http://redmine.replicant.us/projects/replicant/wiki#Building-Replicant
● Developer guide

http://redmine.replicant.us/projects/replicant/wiki/DeveloperGuide
● Porting guide

http://redmine.replicant.us/projects/replicant/wiki/Replicant40PortingGuide
● List of tasks

http://redmine.replicant.us/projects/replicant/wiki/Tasks

Getting started on Replicant hacking

Replicant

Learn more about Replicant:
● Website: http://www.replicant.us/
● Wiki/tracker: http://redmine.replicant.us/
● Source code: http://gitorious.org/replicant

Get in touch with us:
● Forums
● Mailing list
● IRC channel: #replicant at freenode

During the LSM/RMLL:
● Free Your Android Workshop (TD011, Polytech building)
● ARM devices and your freedom (Wednesday 11:40)

http://redmine.replicant.us/projects/replicant/wiki/Tasks

Text and schematics:
● © 2013-2014 Paul Kocialkowski

Creative Commons BY-SA 3.0 license

Images:
● Replicant robot, © Mirella Vedovetto, Paul Kocialkowski,

Creative Commons BY-SA 3.0 license
● Openmoko Neo FreeRunner, © FIC/OpenMoko,

Creative Commons BY-SA 3.0 license
● HTC Dream, © Paul Kocialkowski

Creative Commons BY-SA 3.0 license
● F-Droid logo, © William Theaker, Robert Martinez

Creative Commons BY-SA 3.0 license
● OpenPhoenux logo, © Philip Horger

Creative Commons BY-SA 3.0 license

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29

